Code Documentation

Generated by Doxygen 1.8.10

Thu Sep 3 2015 14:18:20
Contents

1 Code documentation 99

2 File Index ... 101
 2.1 File List .. 101

3 Class Index .. 103
 3.1 Class List 103

4 Class Documentation 105
 4.1 patch Struct Reference 105
 4.1.1 Detailed Description 105
 4.1.2 Member Data Documentation 105
 4.1.2.1 labels 105
 4.1.2.2 mu .. 105
 4.1.2.3 mu_l 105
 4.1.2.4 p ... 106
 4.1.2.5 std 106
 4.1.2.6 std_l 106
 4.1.2.7 var 106
 4.1.2.8 var_l 106

5 File Documentation 107
 5.1 src/parDistLabelMask.h File Reference 107
 5.1.1 Detailed Description 107
 5.1.2 Function Documentation 108
 5.1.2.1 clamp(int x, int a, int b) 108
 5.1.2.2 distLabelMask(unsigned int numPixels, unsigned int *n, std::vector< unsigned int > &vX, std::vector< unsigned int > &vY, std::vector< unsigned int > &vZ, unsigned int numAtlases, patch *patches, patch *patchTarget, std::vector< unsigned int > i, unsigned int long_vector, double thresh, unsigned int numAllPatches, float *dist_labels, unsigned int f, std::vector< float > dist, std::vector< float > dist_lb, std::vector< std::vector< bool > > labels) 108
 5.1.2.3 min(std::vector< float > v) 109
5.1.2.4 parMEX(unsigned int numPixels, unsigned int *X, unsigned int *Y, unsigned int *Z, unsigned int *n, unsigned int numAtlases, patch *patches, patch *patch← Target, unsigned int long_vector, double thresh, unsigned int numAllPatches, int *q, float *dist_labels) .. 109

5.2 parDistLabelMask.h ... 109
Chapter 1

Code documentation

This appendix contains the documentation of the C++ function developed as an optimization of the patch-labeling method proposed by Platero. The aim of this function is to translate part of the original MATLAB code to C++ in order to optimize and reduce execution time.

See also

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

src/parDistLabelMask.h
MEX function that applies non-local means method for automatic brain MRI segmentation . . . 107
Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

patch

This structure contains an atlas and its mean and standard deviation

105
Chapter 4

Class Documentation

4.1 patch Struct Reference

This structure contains an atlas and its mean and standard deviation.

Public Attributes

- float * mu
- float * mu_l
- float * std
- float * std_l
- float * var
- float * var_l
- float * p
- bool * labels

4.1.1 Detailed Description

This structure contains an atlas and its mean and standard deviation.
Definition at line 24 of file parDistLabelMask.h.

4.1.2 Member Data Documentation

4.1.2.1 bool* patch::labels

Label

4.1.2.2 float* patch::mu

Mean of the patch

4.1.2.3 float* patch::mu_l

Mean of the patch label
4.1.2.4 float patch::p
Image

4.1.2.5 float patch::std
Standard deviation of the patch

4.1.2.6 float patch::std_l
Standard deviation of the patch label

4.1.2.7 float patch::var
Variance of the patch

4.1.2.8 float patch::var_l
Variance of the patch label

The documentation for this struct was generated from the following file:

- src/parDistLabelMask.h
Chapter 5

File Documentation

5.1 src/parDistLabelMask.h File Reference

MEX function that applies non-local means method for automatic brain MRI segmentation.

```c
#include "mex.h"
#include <vector>
```

Classes

- struct patch

 This structure contains an atlas and its mean and standard deviation.

Functions

- void parMEX (unsigned int numPixels, unsigned int *X, unsigned int *Y, unsigned int *Z, unsigned int *n, unsigned int numAtlases, patch *patches, patch *patchTarget, unsigned int long_vector, double thresh, unsigned int numAllPatches, int *q, float *dist_labels)

 This function gathers all the input data and prepares the output data.

- void distLabelMask (unsigned int numPixels, unsigned int *n, std::vector<unsigned int> &vX, std::vector<unsigned int> &vY, std::vector<unsigned int> &vZ, unsigned int numAtlases, patch *patches, patch *patchTarget, std::vector<unsigned int> i, unsigned int long_vector, double thresh, unsigned int numAllPatches, float *dist_labels, unsigned int f, std::vector<float> dist, std::vector<float> dist_lb, std::vector<std::vector<bool>> labels)

 This function applies the non-local means method.

- int clamp (int x, int a, int b)

 This function clamps a float variable between the specified limits.

- float min (std::vector<float> v)

 This function obtains the minimum value of a vector of floats.

5.1.1 Detailed Description

MEX function that applies non-local means method for automatic brain MRI segmentation.

Author

Jose María Sanz Sanz
5.1.2 Function Documentation

5.1.2.1 int clamp (int x, int a, int b)

This function clamps a float variable between the specified limits.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Variable to clamp</td>
</tr>
<tr>
<td>a</td>
<td>Lower limit</td>
</tr>
<tr>
<td>b</td>
<td>Upper limit</td>
</tr>
</tbody>
</table>

Returns

Clamped value

5.1.2.2 void distLabelMask (unsigned int numPixels, unsigned int * n, std::vector< unsigned int > & vX, std::vector< unsigned int > & vY, std::vector< unsigned int > & vZ, unsigned int numAtlases, patch * patches, patch * patchTarget, std::vector< unsigned int > i, unsigned int long_vector, double thresh, unsigned int numAllPatches, float * dist_labels, unsigned int f, std::vector< float > dist, std::vector< float > dist_lb, std::vector< std::vector< bool > > labels)

This function applies the non-local means method.

This function computes the similarity measure in order to choose which patches will be selected.

It also applies the non-local means label fusion.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numPixels</td>
<td>Number of voxels selected</td>
</tr>
<tr>
<td>*n</td>
<td>Image dimensions</td>
</tr>
<tr>
<td>&vX</td>
<td>X coordinates of the selected voxels</td>
</tr>
<tr>
<td>&vY</td>
<td>Y coordinates of the selected voxels</td>
</tr>
<tr>
<td>&vZ</td>
<td>Z coordinates of the selected voxels</td>
</tr>
<tr>
<td>numAtlases</td>
<td>Number of atlases</td>
</tr>
<tr>
<td>*patchTarget</td>
<td>Array containing the reference atlas</td>
</tr>
<tr>
<td>i</td>
<td>Coordinates of the centre of the current patch</td>
</tr>
<tr>
<td>long_vector</td>
<td>Number of voxels in the patch</td>
</tr>
<tr>
<td>thresh</td>
<td>Threshold to select patch</td>
</tr>
<tr>
<td>numAllPatches</td>
<td>Number of voxels in a patch times the number of reference atlas</td>
</tr>
<tr>
<td>*dist_labels</td>
<td>Result of non-local means</td>
</tr>
<tr>
<td>f</td>
<td>Voxel index</td>
</tr>
<tr>
<td>dist</td>
<td>(empty) Auxiliar variable for non-local means</td>
</tr>
<tr>
<td>dist_lb</td>
<td>(empty) Auxiliar variable for non-local means</td>
</tr>
</tbody>
</table>
5.1.2.3 float min (std::vector<float> v)

This function obtains the minimum value of a vector of floats.

Parameters

| v | Input vector |

Returns

Minimum value

5.1.2.4 void parMEX (unsigned int numPixels, unsigned int * X, unsigned int * Y, unsigned int * Z, unsigned int * n, unsigned int numAtlases, patch * patches, patch * patchTarget, unsigned int long_vector, double thresh, unsigned int numAllPatches, int * q, float * dist_labels)

This function gathers all the input data and prepares the output data.

This function gets all the input values using MEX-specific functions and prepares the output variable. The functions used appear in the library mex.h:

mxGetData
mxGetPr
mxGetScalar
mxGetLogicals
mxGetNumberOfElements
mxCreateNumericMatrix

Parameters

<table>
<thead>
<tr>
<th>numPixels</th>
<th>Number of voxels selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>*X</td>
<td>X coordinates of the selected voxels</td>
</tr>
<tr>
<td>*Y</td>
<td>Y coordinates of the selected voxels</td>
</tr>
<tr>
<td>*Z</td>
<td>Z coordinates of the selected voxels</td>
</tr>
<tr>
<td>*n</td>
<td>Image dimensions</td>
</tr>
<tr>
<td>numAtlases</td>
<td>Number of atlases (dimension of *patches)</td>
</tr>
<tr>
<td>*patches</td>
<td>Vector containing the reference atlas</td>
</tr>
<tr>
<td>*patchTarget</td>
<td>Structure containing the target image</td>
</tr>
<tr>
<td>long_vector</td>
<td>Number of voxels in the patch</td>
</tr>
<tr>
<td>thresh</td>
<td>Threshold to select patch</td>
</tr>
<tr>
<td>numAllPatches</td>
<td>Number of voxels in a patch times the number of reference atlas</td>
</tr>
<tr>
<td>*q</td>
<td>Patch radius (in voxels) in the three dimensions</td>
</tr>
</tbody>
</table>

*dist_labels | (MEX output) Result of non-local means |

5.2 parDistLabelMask.h

```c
labels | (empty) Auxiliary variable for non-local means

```

```c
// Include header files
#include "mex.h"
#include <vector>

// Structure patches
struct patch{
  float *mu;
  float *mu_l;
  float *std;
  float *std_l;
  float *var;
```

Generated on Thu Sep 3 2015 14:18:20 for Code Documentation by Doxygen
float *var_l;
float *p;
bool *labels;

// Declare function prototypes
void parMEX(unsigned int numPixels, unsigned int *X, unsigned int *Y, unsigned int *Z, unsigned int *n, unsigned int numAtlases, patch *patches, patch *patchTarget, unsigned int long_vector, double thresh, unsigned int numAllPatches, int *q, float *dist_labels);

// Declare function prototypes
void distLabelMask(unsigned int numPixels, unsigned int *n, std::vector<unsigned int> &vX, std::vector<unsigned int> &vY, std::vector<unsigned int> &vZ, unsigned int numAtlases, patch *patches, patch *patchTarget, std::vector<unsigned int> i, unsigned int long_vector, double thresh, unsigned int numAllPatches, float *dist_labels, unsigned int f, std::vector<float> dist, std::vector<float> dist_lb, std::vector<std::vector<bool> > labels);

// Declare function prototypes
int clamp(int x, int a, int b);
float min(std::vector<float> v);